
THE SYNTHESIS AND FLUXIONAL BEHAVIOUR OF THE FIRST [2.1.2.1] METACYCLOPHANE Reginald H. Mitchell* and Yee Hing Lai Department of Chemistry, University of Victoria, Victoria, B.C. V8W 2Y2 Canada.

Summary : 8,15,23,30-Tetramethyl[2.1.2.1]metacyclophane,4, is synthesised. Variable temperature ¹Hmr and ¹³Cmr spectra indicate that 4e is the most likely conformation and that at temperatures above 50°C the molecule is fluxional ($\Delta G_{323}^{*} = 15.4 \text{ kcal/mole}$).

The synthesis and stereochemical aspects of cyclophanes have been of particular interest over the last two decades,¹ with particular attention^{1b} paid to [2.2]metacyclophanes, which possess an *anti*-stepped conformation. The higher $[2^n]$ metacyclophanes have also been well examined² and when n \gtrsim 3 appear to be conformationally mobile. However [2.1.1]metacyclophane appears to have³ a fixed conformation 1, as does [2.2.0]metacyclophane **2**, whereas [2.0.2.0]metacyclophane **3** again appears to be mobile.⁴ Introduction of intra-annular substituents such as

-CH₃, increases the barriers to conformational flipping,⁵ for example both syn- and anti-9,18dimethyl-2,11-dithia[3.3]metacyclophane exists as discrete compounds, whereas 2,11-dithia-[3.3]metacyclophane itself is conformationally mobile.^{3,6} Surprisingly, few of the higher metacyclophanes containing internal methyl substituents appear to have been studied⁸ despite the fact that the chemical shift of the -CH₃ group provides a convenient probe by ¹Hmr of any possible conformational changes.

From the previous results, it is not obvious whether a [2.1.2.1]metacyclophane with intraannular methyl groups will be mobile or not. Molecular models indicate that several interesting conformations might exist. This paper thus describes the synthesis and fluxional properties of 8,15,23,30-tetramethyl[2.1.2.1]metacyclophane **4**.

In order to examine new annelated annulenes,⁹ we had reason to prepare¹⁰ the thiacyclophane **5** which provides a convenient starting point to synthesise **4**. The ¹Hmr spectrum (90 MHz, CDCl₃) of **5**, a [3.1.3.1]metacyclophane; indicated that it had no fixed conformation, and showed peaks at 6 7.6-7.0 (m, 12H, Ar-H), 3.96 (s, 2H, Ar-CH₂-Ar), 3.74 (s, 8H, -CH₂S-) and 1.97 and 1.87 (s, 6H each, -CH₃). Stevens rearrangement⁶ (t-BuOK-THF) of the bis methyl sulfonium tetrafluoroborate of **5** gave a 48% yield of the [2.1.2.1]cyclophane **6**, which on treatment with W-7 Raney Ni (see the following accompanying communication) gave the desired cyclophane **4** in 85% yield,¹¹ as

colourless crystals from cyclohexane mp $282-284^{\circ}$ C. Its variable temperature ¹Hmr spectrum is shown in Figure 1. Clearly at room temperature and below it exists in a fixed conformation which shows fluxional behaviour at higher temperatures. Examination of molecular models indicates that several conformers **4**_a-**4**_e might be considered. The two different types of -CH₃ group however, indicate that **4** cannot be the *anti*, *anti*-conformer **4**_a or the *syn*, *syn*-conformer

4b . Consideration of the aromatic hydrogens rules out **4d** which would not be expected to have six shielded aromatic hydrogens characteristic of two *syn*-benzene rings, (possessed by **4c** and **4e**). The appearance of these hydrogens in the low temperature spectrum is as an AB₂ spectrum which seems more likely for **4e**, whereas **4c** from models should show more differentiation between the chemical shifts of the three sets of hydrogens, i.e. an ABC spectrum. Unfortunately, the AA'BB' spectrum of the bridge $-CH_2CH_2$ - is not clearly enough resolved to positively distinguish between **4c** (one set *syn*, one set *anti*) and **4e** (both sets *anti*). The ¹³Cmr spectrum (-30°C) however shows twelve types of aromatic carbon, two different bridge $(-CH_2CH_2-)$ carbons, a single type of $-CH_2$ - bridge carbon and two $-CH_3$ carbons. This is clearly consistent with the more symmetrical **4e**, since from models **4c** should show four different $(-CH_2CH_2-)$ carbons, two different $-CH_2$ - carbons and four $-CH_3$ carbons.

In the high temperature spectrum each peak occurs at the average $(\pm .02 \text{ ppm})$ position of the corresponding peaks in the low temperature spectrum, indicating a true fluxional process,

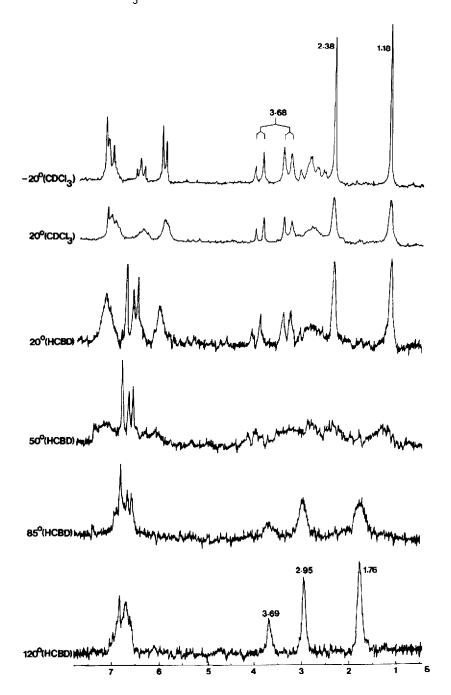


Figure 1: Variable Temperature $^1\rm Hmr$ spectrum (Hexachloro-butadiene or CDC1_3-90 MHz) of the [2.1.2.1]cyclophane ${\bf 4}$.

consistent with $4e \neq 4e$, rather than one conformer going to a different conformer. Application of the Gutowsky-Holm equation¹³ to the separation of the -CH₃ groups ($\Delta v = 108$ Hz; T_c = 50^oC) leads to a value of $\Delta G_{323}^{\ddagger} = 15.4$ kcal/mole. It will be interesting to compare this result with other methyl substituted cyclophanes as they become available, and with other families of cyclophanes.¹⁴

We thank the University of Victoria and the Natural Sciences and Engineering Research Council of Canada for support of this work.

REFERENCES

- Reviews: (a) B. H. Smith in "Bridged Aromatic Compounds", Academic Press, New York 1964;
 (b) F. Vögtle and P. Neumann, Angew. Chem. Int. Ed. Engl., 11, 73 (1972); Synthesis, 85 (1973);
 (c) S. Misumi and T. Otsubo, Acc. Chem. Res., 11, 251 (1978);
 (d) F. Vögtle and G. Höhner, Top. Curr. Chem., 74, 1 (1978).
- R. Flammang, H. P. Figeys and R. H. Martin, *Tetrahedron*, 24, 1171 (1968); R. Paioni and W. Jenny, *Helv. Chim. Acta.*, 52, 2041 (1969); K. Burri and W. Jenny, *Helv. Chim. Acta.*, 50, 1978 (1967).
- 3. T. Sato, M. Wakabayashi, K. Hata and M. Kainosho, Tetrahedron, 27, 2737 (1971).
- 4. F. Vögtle, Annalen, 728, 17 (1969).
- 5. Review: H. Förster and F. Vögtle, Angew. Chem. Int. Ed. Engl., 16, 429 (1977).
- 6. R. H. Mitchell and V. Boekelheide, J. Am. Chem. Soc., 96, 1547 (1974).
- 7. F. Vögtle and P. Neumann, Tetrahedron, 26, 5299 (1970).
- Both 9,17,26-trimethy1-2,11,19-trithia[3.3.3]metacyclophane and 9-methy1-2,11-dithia[3.3.0]metacyclophane are reported to be conformationally mobile.^{6,7}
- 9. See for example R. H. Mitchell, R. J. Carruthers and L. Mazuch, J. Am. Chem. Soc., 100, 1007 (1978).
- 10. Compound¹¹ 5, mp 297-299^oC was obtained in 80% yield by cyclisation¹² of 3,3'-bis(bromomethyl)-2,2'-dimethylbenzophenone¹¹ and di(3-mercaptomethyl-2-methylphenyl)methane¹¹.
- 11. All new compounds gave satisfactory analytical and spectroscopic data.
- R. H. Mitchell, T. Otsubo and V. Boekelheide, *Tetrahedron Letters*, 219 (1975); R. H. Mitchell, *Heterocycles*, 11, 563 (1978).
- 13. See for example: I. C. Calder and P. J. Garratt, J. Chem. Soc. (B), 660 (1967).
- See for example: D. J. Brickwood, W. D. Dilis, J. S. Stephanatou and J. F. Stoddart, J.C.S. Perkin 1, 1398 (1978).

(Received in USA 12 March 1980)